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Abstract

The paper presenIs a general method for lhe resoluIion of redundancy that combines the
Jacob|an pseudoinverse and augmentation approaches. A direct adaptive control scheme is
developed to generale joint angle trajectories for achieving desired end-effector motion as well
as additional user defined tasks. The schef2m e_!sures arbitrarily small errors belween the desired
and the actual melton of the manipulator. Explicit bounds on the errors are established that

are directly related to the mismatch between aelnal and eslhnated pseudoinverse Jacob|an
matrix, motion velocity and the controllergain. It is shown that the scheme is tolerant of the
mismatch and consequently only infrequent pseudoinverse computations are needed during a

typical robot motion. As a result, the scheme is computationally fast., and can be implemented
for real-time con|.rol of redundant robots. A method is incorporated to cope with the robot

singularities allowing the manipulator to get very close or even pass through a singularity while
maintaining a good tracking performance and acceptable joint velocities. Computer simulations
and experimental results are provided in support of the theoretical developments.

1 Introduction

The dexterity and versatility offered by redun(tant manipulators allow their utilization for tim

performance of complex tasks in practical environments. Ilowever, effective utilization of this dex-

terity requires satisfactory resolution of the redundancy and its real-time implementation.

During recent years two main approaches to the resolution of the redundancy have emerged.

These can be categorized as Jacobian pseudoinverse [1]-[9] and 3acobian augmentation [10]-[141

approaches. In the pseudoinverse approach, a certain vector lying in the null space of the Jacobian

matrix is utilized for a variety of design objectives. These objeclives include optimization of a

performance criterion [2], obstacle avoidance [3], torque optimization [4], and task prioritization

[5]-[6]. A review of pseudoinverse methods is given in [7]. In the augmented Jacobian approach,

an additional Jacobian matrix is defined for the purpose of utilizing the extra degrees of freedom

offered by redundancy. This matrix is augmented with the end-effcctor Jacobian matrix to obtain a

square Jacobian matrix, and thus the problem of redundant manipulator control is transformed to

that of a non-redundant manipulator. A method to augment the Jacobian matrix for the purpose

*This work was supported by NETROLOGIC Inc through NASA Grant No. NAS7-1110

1

(NASA-CR-190520) ROBUST ADAPTIVE KINEMATIC

CONTROL OF REDUNDANT ROBOTS (San Diego

State Univ.) 26 p

G3/63

N92-29573

Unc1as

0108047



of optinlizing a performance criterion is proposed by Baileiul [11]-[12]. The concept of augmenting

tile Jacobiau matrix is generalized by Seraji [13], allowing the ntilization of the r(Sdundancy for

achieving a variety of objectives [1,1]. The augmented Jacobian approach has the feature of making

the moti(m cyclic, which is desirable for repetitive operation, and presents an advantage over the

pseudoinverse approach, tlowever, augmentation introduces additional singularities which cannot

be easily characterized and which aggravate the singularity probh, m assock_te,I with revolute .joint

manipulators. Desired Cartesian tra.iectories pm_sing in the neighl_orhood of such a singularity

demand wery large .joint velocities which are impossible to achieve in practice. To overcome the

singularity problem, methods have been proposed [6], [15] that reduce the.ioint velocities at the cost

of introducing or increasing the mismatch between the computed and the actual inverse Jacobian

matrix. Such a mismatch produces errors in position and orientation when attempting to control

the manipulator.

Motion control of a redundant manipnlator can be implemented in a hierarchical scheme using

either of the above two approaches to the redundancy resolution. In such a scheme the joint angle

trajectories are generated to achieve a desired end-effector motion, as well as achieving additional

objectives offered by extra degrees of freedom. The generated joint angles are then used as the set,

points of the low level servo-loops. Such a hierarchical scheme is particularly attractive in practice

since most industrial manipulators have high performance servo-loops that readily accept joint angle

set. points but cannot easily be modified to implement joint, torques in a non-hierarchical scheme. A

joint space trajectory generator using the feedback control approach was originally proposed in [16],

and extended to redundant robots in [17]-[19] within the framework of the pseudoinverse approach

and in [20] using the augmented Jacobian approach.

Regardless of the approach used to resolve the redundancy and to overcome the singularity prob-

lem, the computatio,ls involved in motion control of a redundant manipulator can be excessive.

Motion control using the pseudoinverse approach requires computation of the Jacobian _pseudoin-

verse, it.s null space matrix, and derivative of an objective function at every control cycle. Similarly,

motion control using the augmented Jaeobian approach, requires determining the Jacobian matrix

associated with use," defined kinematic fimctions, and the inverse of a higher dimensional augmented

Jacobian matrix at, each control cycle. These intensive computations can make real time implemen-

tat,ion of motion control on a practical redundant manipulator impossible.

In this paper we propose a general approach to the redundancy resolution which retains the essen-

tim features of both t.l_e pseudoinverse and the augmentation methods, and which reduces to either

method as a special case. Within the framework of this general approach, an adaptive kinematic

control scheme is developed for tra.iectory tracking that, requires only a crude estimate of the inverse

Jacobian matrix, and t]ius allows very infrequent computation of the inverse or the pseudoinverse

matrix. This results in considerable computational savings and makes real-time implementation of

the scheme legible on a practical redundant robot. The kinematic control scheme also achieves

high tracking accuracies and acceptable joint, velocities even when the manipulator passes through



asingularity.

2 Adaptive Kinematic Control

Consider an n jointed robot manipulator performing tasks in the operational space. The

relationship between tl,e me. x 1 end-effector position and orientation vector X_ , and the n x I joint

space vector O, where me _< n, is given by the forward kinematic map

X_ = f_(e) (1)

The corresponding relationship for velocities is

:('_ = J_(O)6 (2)

where .L.(O) = _ is the m_ x n Jacobian matrix of the end-effector. Tile problem of kinematic

control of a redundant robot is to determin.e the joint angle vector O(t) to achieve a desired end-

effector trajectory vector X_a(t), and to utilize tile redundancy offered by r = n - m_ extra degrees

of freedom to perform additional tasks, In the pseudoinverse method of re&mdancy resolution, the

joint velocity vector (_(t) is related to the end-effector velocity ,_'e by

6(0 = c (o)2o(O + - (3)

where G,(O) --- J_(O) is the pseudoinverse of J,(O) satis6'ing J,G_J_ = J,, J_G_ : Ge, (G,J,) t =

J_G¢ and (J_G_) l = G_J_, and the argument O has been dropped for convenience. Tim scalar 7 is

a positive weighting factor, and Z is an arbitrary n x 1 vector that has no effect on the end-effector

motion due to the fact that it is multiplied b}; {.lee null space of Je. In the pseudoinverse method, this

vector is generally set to the gradient of an objective function q*(O) for the purpose of optimization,

_ 0_ In the generalized augmentation method proposed by Seraji [13], ,- additionalthat is Z - ?N"

kinematic functions Xa = fa(O) arc defined to resolve tile redundancy. These functions arechosen

to reflect the desired additional tasks to be performed. The r x n Jacobian matrix of additional tasks

J_(®) = °o_ is augmented with the m, x n end-effector Jacobian matrix Je to form an au_nented

n x n Jacobian matrix. The manipulator now becomes non-redundant. Tim generalized _ugmen-

ration method has the advantage of letting the user easily define additional kinematic functions

and making the motion cyclic. IIowever, the utilization of redundancy for optimization, although

theoretically possible within the framework of the augmented Jacobian method, is computationally

very intensive. This is due to the fact that the Jacobian matrix must be augmented with the matrix

Ja = o (N r o'1'-b--6_ g-g), where N = (In -- GeJe) is the null space of the end-effcctor Jacobian matrix.

In general, a redundant manipulator can be utilized for achieving two types of tasks. The first

type, which we will refer to as the primary tasks, are those tasks that can be expressed by } set of

kinematic equality constraints that must be satisfied accurately. Examples of such tasks are tracking

an end-effcctor trajectory, and maintaining an elbow height or a shoulder angle at specified va_es for



theaclfievementofacertainobjective.Theothertypeoftasks,orsecondarytasks,involverealizing
aperformancecriterionasbestaspossible,forexample,optimizingaperformancecriteriouto avoid
joint limits. Thesetasksdonot needto beaccuratelymonitoredor t.ightlycontrolled,andan
approximateoptimizationisgenerallyaccept.able,hi theaugmentationmethodall additionaltasks
aretreatedasprimarytasksthatmustt.obeachievedaccurately.Anexcessivenumberof primary
taskswill resultin thedifficultyor inabilityin achievingthesetasks.Ontheotherhand,in the

pseudoinverse method, the tasks are formulated in the form of an optimization criterion, wh_{h may

not be the most. practical or natural way of expressing and solving a particular kinematic prohlem.

To erase these trade-offs, we propose a method for combining augmentation and pseudc_werse

approaches, thereby permitting a more natural formulation of both kinds of tasks. Specifie'a!ly let

0 <_ ra <_ r degrees of redundancy be used for the user defined tasks described by the rax 1 vector

equation A'_ = f_(@), where X, is the additional task vector. The augmented system of kinematic

equations is

X = X_ = f, ((9) (4)

where X is an-m x 1 vector, m = (,n_ + ,',,), aii{] will be referred to a.s the "i)osture" vector. This

vector is composed of position and orientation of the end-effector, and possible additional_kinematic

functions that define Cartesian or angular position of the arm such as elbow height or distance of

points on the arm from obstacles. The equation relating ]{" to @ is

.k" = ,I(5) (5)

J" ') is the x n augmented Jacobian matrix. Similarly, let. 0 < ro < r degreeswhere a : Jr, / m _ _

of freedom be utilized for optimization of a performance criterion tI,('@), where r = r_ + io. The

optimization criterion can be manipulability maximization, joint limit avoidance, minimal joint

motion or obstacle avoidance, to mention a few. Equation (3) can now be used to obtain the joint

angle trajectory vector @(t) for achieving both a desired posture vector Xd(/) and optimiz_.tion of

the performance criteria tP(@). This gives

i'o(O = (c2 (0+ -cJ)z) dt (61

where G- jr(@) and Z = _oo • It is evident that when ro = 0, the method reduces to the purely

angmented Jacobian matrix method. Likewise, when r_ = 0, it. reduces to purely pseu'doinverse

method.

Equation (6) is of little practical use. since the integration can drift away even with small inac-

curacies in the knowledge of the kinematic parameters or the computation of the Jacobian matrix.

It will also produce undesirable behavior when the manipulator passes close to a singularity. It

is, therefore, important to develop a scheme that is robust with respect to robot singularities or

inaccuracies in the estimation or computation of the Jaeobian matrix. The latter is very important
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Figure 1: Block diagram of tile overall scheme.

since the computation of the Jacobian inverse or tile pseudoi.verse must be performed very infre-

quently to reduce computational burden. Such infrequent computations generate inaccuracies in

the inverse Jacobian matrix and are reflected as errors in the manip.lator position and orientation.

In order to resolve these difficulties, the feedback co.trol scheme of Figure 1 is employed, where

E(t) = Xd(t) - X(t) denotes the error between the desired and act.al posture vector. The controller

consists of an adaptive time-varying feedback gain matrix if(t) acting on the error and a matrix <7

that represents an estimate of the pseudoinverse Jacobian matrix G = jr. The estimate G' can be

considerably different fi'om the actual G, althougl, a good est, imate reduces the controller gain, as

will be seen. As we discussed earlier, our objective is to achieve accurate tracking of the end-effector

and the additional tasks as defined by the desired value of the posture vector Xd(t), while attempt-

ing to satisfy the secondary tasks as best as possible. Consequently, the error in the posture vector

is directly controlled, whereas the optimization is indirectly realized. Figure 1 indicates that the

required joint angular velocity vector _)(1) can be obtained from

6(0 = a (.'t_(0 + 1;(t)z(,)) + _(r,, - OJ)z (7)

where of is an estimate of the Jacobian mat rim The problem is now to determine N(t) to ensure that

t,he posture vector X(Q closely follows its desired value Xd(t) so that the error E(t) is arbitrarily

small. Premultiplying (7) by J and substituting the result into (5), we obtain

2(t) = J_ [2.(0 + I;(tlz(_)] + _J(r. - c;of)z (8)

Subtracting both sides of (8) from -_'d and rearranging yields the error dynamic equation

k(_) = -jdr_'(t)e(_)+ (I,.- Jd)kd(t) --7J(r,,- ¢.J)z (9)

Let us define the mismatch between the actual aqd estimated Jacobian matrices as

H = I,. - JO 0o)



I'll the ideal case where J is known accurately and rank J = 771, the mismatch matrix i:s If =

I,,, - jjT(jjT)-t = 0, and there is no mismatch. Substituti_g (10) into (9) and simplifying, we

obtain

E(t) = - I,'(t)E(t) + 1trY(t) E(t) + tt2,,(t) - 7rSz (1 1)

where HL = (J -j)+II] is a modified mismatch matrix and has the property that Hi = 0 whenever

the original mismatch matrix H is zero. The term 7H1 z is iu fact the interactiotl of the secondary

task on the primary task error dynamics. When H = 0, (11) simplifies to E(t) = -[((t)E(t). In

this case the nonlinear system (11) is reduced to a simple linear system, which partially explains

the reason for usitJg the feedback configuration of Figure 1. It is easy to show that in the case of

zero mismatch, limt__E = 0, provided that K(t) is a symmetric positive definite matrix, llowever,

there will always be a mismatch because of the imperfect knowledge of the robot parameters, the

inaccuracies due to infrequent calculalions of the inverse Jacobian matrix, or the robot operating

near a singular point. It is, therefore, desirable to develop a posture trajectory tracking algorithm

that will be robust t.o both inaccuracies in the Jacobian matrix calculations and robot singularities.

In the next section, we will show that the control algorithm (7) with /((Q designed as an adaptive

proportional plus integral controller will achieve these objectives.

3 Stability and Tracking Performance

Consider the proportional plus integral feedback matrix

t<(O= Kp + t;,(O (12)

where Kp is a constant positive definite symmetric matrix, and Kl(t) is obtained from an integral

adaptation algorithm ,as

I'K,(0 = It'0+ ( E(T)Erb -) - (la)

where K0 is a constant positive definite symmetric matrix representing the initial value of the

integral, _ > 0 is the constant integral coeglcient, and _ > 0 is the leakage coefficient used to avoid

possible integral wind up [21]. Equation (13) implies that

I'Q(t) = a E(t)ET (t) - a IQ (t) (14 /

Note that I(t(t) is a positive definite symmetric matrix for all t. In order to show that the error

E(t) described by the dynamical equations (1 I) and (14) can be made arbitrarily small, we consider

the Lyapunov function candidate

V = ET(t)E(t) + _ tr (KT(t)I(t(t)) " (15)

whose derivative along the trajectories of (11) and (14) is

'(i, = _ET KE + ET HKE + ET H.y,t - ..fET H_Z + -_ tr



wl_ere the time argmnent is dropped for convenience. Subst tuting for K and /"t" from (12) a_.d (1,I)

into (16) and simplifying, we obtain ....

)I/=-E T (1-)I(,r+Kp E+ETtIKE+,t'2TH2d-TETItIZ--_lr(I(_Ii;) (17)

1
Suppose that the coefficient a is chosen su:hh tha.t a > 1, and let kt = A,m,, (Kp + (1 - _)NI),

and 1:2 = )_m_(K), where .'_,nin and ,_,,_ denote tbe nlinimum and the maximum eigenvalues of a

matrix, respectively. Equation (17) implies that

_<-h,,ll_ll2 + k_llullll,_2ll_-+ F: (H2_--rU, Z) -_29 tr(lqT Ki) (is)

Le+t,_-- ,_ox(ll::ll), 'J, = "axCllShll), 4"-- ,++a_tllX'++ll),_,+<iv = ,-,+xfllZll). We i,a,,e it, tlie worst

C a.s C

< -k_ I k,7 IIEII2+ +-:7_p)IIEII-

In order to prove the stability of the error dynamics, we will assume that 71 < _ _< 1. This

assumption places an upper bound on the mismatch. It. must be noted, however, that this upper

bound is resulted from the worst case nature of the analysis, and that in practice the scheme often

accommodates larger nlismatches, a.s will be demonstrat+cd in Section 4. Let

k=kl(1-k_q_ ; q = ,,( + 7r/ip (20)
\ _:t]

to obtain from (19)
O"

9 < -k ItEIt_ + qllEll- _ t,. [[,:rzcz) (21)

S,tbstit_ting for IIEtl_ = 2V- _ t,"(KTZC+)from (1,5)i,,to (21) and dropping the negative term

l (KTKI) appearing nnder the radical in the resulting equation, we obtain----_ tr

f/ <_2kV +qV_- (_ k) tr(Krlf,) (22)

Now if the leakage coefticient is selected such that _r _+ k, then (22) red(ices to

9 <_ -2kV + q _ (23)

Note that the choice ofo" >__k is very conservative due to the fact that the negative term was dropped

above and that in practice a much smaller value of a is sufficient to ensure the validity of inequality

(23). This inequality is now in a form that can be solved analytically by defining

IV = v'V q (24)
_k

which yields
9

9_ = -- (2+)
2,/Y



Substituting (24) and (25) into (23) and dividing both sides of (h,, resulting inequality by 2v"-V > 0,

we obtain

Ii z <_ -kW (26)

The solution to (26) is

w (_) _< Iv (z(to)) _-,.¢,-,o) (27)

where to is tile initial time. In view of (24), tile la.st inequality becomes

q (2s)V (E)_< e-_(t-t°)_/V (E(t0))+ (1-e -l'(t-'°))

It. is easy to verify that V(E) decre_es monotonically along any solution of the error dynamic

equations (i1) and (14) m_tll the solution reaches the compact region

77.s= E: v(E) _<_,)= _ (29)

where the subscript f denotes the final values, that is tus t --+ co. The rate of decrease of V(E) is

at least as fast as e-kt. We conclude that the solutions E of (11) and (14) are globally ultimately

bounded. Since fl'om (15) we have IIEII2 < 2v, it follows that within the region _S given by (29),

the error is bounded by

q (30)IIEI[< _.

Equations (30) and (20) indicate that the upper bound on the steady-state tacking error is related

to the accuracy of the inverse Jacobian matrix estimation, the desired velocity of the posture vector,

and the controller gain. The adaptive nature of It" coupled with a reasonable estimate of the inverse

Jacobian allows the achievement of very low tracking error with small or moderate controller gains.

Extensive simulation remtlts have shown that even when the estimate of the Jacobian matrix is

significantly different from its actual vah,e and the end-effector moves fast, the error can be made

very small by increasing the controller gain k. The latter can be achieved using higher values of the

integral coefficient cr and the constant matrices h'0 and /'(t,.

3.1 Discrete-Time Implementation

In practice, the adaptive trajectory generator algorithm described by (7), (12) and (13) is

implemented in discrete time. Using the trapezoidal integration rule, the discrete form of (13) is

i-1

= I '0+ (z zT + (r,',,+ I%.+1))1 (31)
i:0

where T¢ is the control sample time and Kli and Ei denote , respectively, the values of the adaptive

matrix lit(t) and the error vector E(t) at timer = iT¢, i = 0, 1,2 ..... As with any discrete time

feedback systems, the tracking performance deteriorates when T_ is increased. Equation (31) can be

written in a computationally more convenient form as

(')K,i = 1 + 0.5crT¢ [(1 - O.5crT_)K,(I_U + 0.5e_T¢(EiE T + Ei-lEF_l)] (32)



Similarly,thediscreteformof thecontrollaw(7)usingtile trapezoidalintegrationruleis

Z

where

(33)

"(X<,,+ r<iz,)"+ -,(r,,fli = G'i (34)

where the subscript i denotes the values at time t = its. The above control law requires an estimate
._ ,

of the Jacobian pseudoinverse matrix Gi. An efficient algorithm to calculate the Jacobian matnx .Ji

is given in [22]. The estintated pseudoinverse mntrix is obtained from Ji as

Crr i = Ji T (JiJiT) -i (35)

where the pseudoinvere in (35) minimizes IIX' -L6,11. This procedure ,,'ill provide a reasonably

accurate estimate of the pseudoinverse, that is G _ G. llowever, it has two main drawbacks, namely

computational intensity and excessively large values of G, and consequently of joint velocities, near
e •

the robot singularities. In order to resolve the problem of excessive joint velocities near the robot

singularities, we estimate the Jacobian pseudoinverse to minimize

{ IIX',' - J, @ill + # II@'ll ) (36)

where the vahie of/3 > 0 determines the weighting placed on the nainimization of joil_ velocity

errors. The inverse Jacobian matrix that realizes (36) is [6]

Gi = .liT (.li.ll"t"+ ill)-i (37)

Note that the inverse in (37) exists even when the manipulat.or is at a singularity. The weighting

factor 13 can be adjltsted to have a small vahle near robot singularity, and zero elsewhere. One

method to achieve this is to choose/7 according to

/_o(1- w) 2, w<wo (38)/7 IV 0

t O, w >_ wo

where w = v_tet(JJ T) is the manipulability memsure, fl0 is a constant and w0 is a specified threshoht.

A more elaborate technique for the selection of,:7 is based on singular values of Ji [3]. The addition

of the term/3[ in (37) introduces mismatch in the Jacobian pseudoinverse and can produce tracking

errors, lIowever, the proposed adaptive kinematic scheme is robust with respect to the mism, atch and
It

will automatically increase the gains to the level that is needed to achieve good tracking performance,

as discussed before.

A major portion of the computation in each control cycle is the calculation of the Jacobian matrix

and its pseudoinverse. In order to significantly reduce the computational burden, the calculation of

the Jacobian matrix and its pseudoinverse are performed, merely once every Ts = vT¢ seconds, where

v >> 1 (typically 100) is an integer. This implies that the costly computation of" the Jacobian matrix



andits pseudoinverseareperformedonlya fi'_wtimesduringa typicalrobotmotion.Furthermore,
to accountforthedelaytlmethatoccursdueto thecomputationofOi, we inlro,luce a t'Tc second

delay in the inlplementation of the scheme. Equation (34) is now

_i =G,_, (.'{'di + [QEI) + 7(/,-O,_,J,_,)Zi (39)

where 01-_ is the value of 6' at time t = (1- I)Tj = (l- 1)vT_, I = 1,2,3,.-.. Because of
1

the robt,stness of the adaptive kinematic algorithm t.o the Jacobian mismatch, accurate tracking is

possible despite the mismatch which is brought about by both the infrequent updating of Jacobian

pseudoinverse and the computation delays. This will be demonstrated in the next section.

4 Examples

In this section, the adaptive joint space trajectory generator developed in the previous sections

will be applied to two examples. In the first example a modified PUM'A 562 is utilized to demonstrate

the redundancy resolution using the proposed adaptive khmmatic control method. In the second

example, the kinematic model of a regular PUMA 562 manipulator is used for both position and

orientation tracking while the robot passes repeatedly through singularities. The control sample

time is selected ,as T¢ = 2 ms in all cases.

4.1 Example 1

In this example we investigate the performance of the adaptive scheme for trajectory tracking

of a modified PUMA 562 manipulator. The PUMA is made redundant by adding an extra link to

its wrist, ms shown in Figure 2. The joint angles to be used are waist 01, shoulder _., elbow 0a,

and wrist angles 0.1 and 0s. Joint 6 provides rotation of the extra link and will not be used in this

example. The modified PUMA is now a redundant for positioning the tip of the extra link in the

three dimensional space. The kinematic equations of the modified PUMA, which has two degrees

of redundancy, are given in the Appendix. In the following we will study two causes, where in both

cases the tip is required to move on a straight line in the Cartesian space. The desired position

trajectory is described by

.Vod(O = .V_(O) + (X_(,_) - :V_ (0)) .V(O (40)

where Xe(O) and X_(c,o) are the initial and final values of the tip position vector, and g(.) is a

cycloidal function of the form

v 1 sin 2Try 0 < v < r (41)

i

7-2--7 ,- '
1, . v>_r

where r is the time required to move the tip from its initial position Xe(O) its final position X_(oo),

and is selected as r = 2s. Note that (d0)-(dl) describe the equation of a straight line in the Cartesian

10



coordinat.es.Thestartingjoint anglevectorisselectedasO(0)= (-.15,-20, -5, 0, 50)T.degrees.
Thesecorrespondt.othetip CartesianposiliouX_(0) = (:140, -130, 810) Tmm . The final position

of the tip is specified as X_(oo) = (500, 500, 500) 7, mm , and the Cartesian distance to be traveled

is D = IIX (oo) - x¢(0)ll = 720 ,nm.

4.1.1 Case A

In this c,'_se study, combined augmentation and opiimization are utilized for the resolution of

the redundancy. In addition to the tip trajectory tracking, it is desired to decrease the elbow height

linearly from the starting wdue h(0) = X,_(0) = 150 m,n to reach a value of h(oo) = .Y,_(e_) = 0

at time t = 1 s. This height is to be maintained to avoid collision with an obstacle while the tip

continues it.s niotion to get to the goal position at. tinle t = r = 2s. The desirer[ elbow height

trajectory is

X_,_,(t) : X,,(O) + (X,,(,_) - (Xo(O)) .q(20 (42)

where 9(.) is given in (41). The desired posture vector is obtained by augmenting/.lie tip position

vector and the elbow height as

Xd(l) = Xad(t) =(21d(l_), X.',Z(t), xaa(t), x4a(t)) "r (43)

where the first three components describe the Cartesian coordinates of the tip position, and the last

component, x4d(t), is the desired elbow height trajectory.

In addition to the above specifications and in order to avoid joint limits, it is desired to keep

each joint angle 0./, j = 1,2, • •., 5, as close as possible to its center vahle 0j¢ = _2 , where 0j_,

and Ojt are the upper and lower limitsof the joint angle 0./. This is done by maximizing the function

qJ(@)=- \ _; / (44)
!=

where Oj_ -= _2 is the span. The set. of pairs (Oit,Oiu) for joints 1 to 5 of the PUMA are,

respectively, (-160,160), (-223, 43), (-48,236), (-110,170) and (-100,100) degrees.

The control algorithm (32), (33) and (37)-(39) are applied in which the gain matrix IC(t) is

adapted with ICp = No = 0, a = 109 and ¢r = 0.7 , so that only integral adaptation with a

leakage term is employed. Note that the large value of c_ is dlle to the fact that the errors Ei

and the sample time Tc in (32) are measured in meters and seconds, respectively. 1. The vahies

of/3o = 0.007 and n,0 = 0.015 are used in (38). The pseudoinverse Jacobian matrix is computed

every Tj = 100 ms. This means that for every ,50 control cycles only one pseudoinverse Jacobian

is computed. In addition, to account for the delay in computation, a one sample delay 'of Tj is

introduced in the calculations of the Jacobian pseudoinverse matrix, as discussed before. Thus the

l Although the restllts are given in millimeier, milliseconds anti degrees, lhe actual compu|atlons are performed

with units in meters, seconds and radians o

11



pseudoinversebeingusedfor computiugof l.he.joinlanglesisout.of dateby asmuchas2007ns,
whichcanproducelargemisn_alcll.

Thearmmotionisshownin Figure3 . Theaclualtip positionlra.jectories(:e_(t),a:2(t),xa(t))
andtheelbowheighttrajectoryz.l(l) closely follow ll,e desired lrajectories (zoo(l), a:_a(t), ._ad(/))

and z.,e(1), respectively, as seen in Figure 4. The errors ct(/) = Xl(l(/)- .r., (I), e2(t) = *2a(l)- a:2(t),

eat/) = zoo(l) - a:a(t) and e4(t) = z4d(t) - z.l(t) are plotted in Figure 5 and indicate ,naxinmm

errors of 1.0 rnrn, 0.7 7ran, 0.6 mm along lhe three axis, and 1.05 777m in the elbow height. These

maximum errors are very small compared to the Iravoled distances shown in Figure 4. The average

errors are less than 0.3 _m71. It must be no|od ,hal Ihe ahove low tracking errors have been obtained

despite relatively fast trajectories and infrequent .lacohian matrix eompl,tation. The joint angle

trajectories to achieve the above motion is shown in Figure 6. The .joint angles have been kept as

close a.s possible to their center values through the oplimization of the performance criterion. It

is interesting to note from Figures 3 and 6 that] lhe arm continues to change posture to" fi, rther

optimize the performance criterion even at the comple_ion of the tip trajectory. This is done while

keeping both the tip at the position X_(oo) = (500, 500, 500) y 7nm and the elbow at the height of

X_(oo) = 0. The optimization can be speeded up and disl.ributed more evenly throughout the arm

motion by increasing the value of 7 in (15).

Suppose now that to filrther reduce the computalions, lhe Jacobian pseudoinverse matrix is

initialized correctly, but is not updated at. all, that is Tj = oo. The norm of the mismatch matrix,

IlHll,is plotted in Figure 7 and indicates a maximum mismatch of '1 = rn_,xllHIl _ 2.8 ,vhieh exceeds

the conservative limit of 1 used in the proof of stahility. Despite this, the error responses plotted

in Figure 8 show a maximum error of only 1.3 7ran, 0.8 _nrn and 1.3 rnm in the three coordinates

of the tip position and 0.3 _7_n_ in the elbow height. These error are only slightly higher than those

obtained with 100 ms updating. It is seen that despite suspension of the Jacobian corr_)utations,

which has resulted constant Jacobian matrix through the entire motion, the scheme has tr'gtcked the

desired trajectories accurately. This has been achieved mainly due to lhe adaptive control scheme.

Finally, let us quantify the computational savings ms a result of infrequent npdating. Let the CPU

time required to compute the joint trajectory vector O for one control cycle with Jacobiml ul_dat.ing

times Tj = T¢ = 2 ms, Tj = 100 7as and Ta = oo be denoted by t2, tin0 and too, respectively. Using a

Sun computer it is found that for the present example, l= = 6.5 ms, tt00 = 1.06 ms and too _- 1.00 _ns.

These results reflect the computational intensity involved in the Jacobian pseudoinverse calculations

despite using an efficient algorithm [23]. The results also indicate considerable CPU time savings due

to infrequent updating of Ta = 100 ms. Although the adaptive scheme can tolerate no pseudoinverse

updating, only little extra savings is obtained using Tj = oo.
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4.1.2 Case B

The purpose of this case study is to show how bolh extra degrees of freedom can be used for

atlgmentation, and to further denloustrate the robustness of tile algoritlnn.

Consider the manipnlator where the tip and the elbow are required to track the trajectories as in

Case A. In addition, these tasks are 1o be performed while freezing one wrist joint angle to:_t value

of 04 = 450 to represent the c_se of a joint motor failure. The additional task wector is now the 2 x 1

vect°rX"= ( x'x5 ) ,vherexs=O.,,andtheposturevectorisX=(X_ xa)T =(xl, x2,''',xs) T.

All parameters are left at their values as in Case A. The error responses are shown in Figures 9

and l0 and indicate low tracking errors in all componenls of the posture vector. The maximmn

Cartesian error occurs in xl with a value of el = 0.9 ram, and the average error is less than 0.4 ram.

The maximum wrist angle deviation from its frozen value is 0.6 degree. The joint angles tt'ajectories

to achieve the above tasks are shown in Figure I I, and reach their final values after about 2s when

the desired trajectories are their steady-state values. Comparing Figures 11 and 6, we observe that

the joint angles in Figure iI are farther away from their center values because no optimization is

performed in Case B. The arm motion is depicted in Figure 12 and further illustrates this point.

If the inverse Jacobian matrix is not updated, the maximum Cartesian error is found to be

1.05 ram, and the maximum wrist angle error is 0.3 degree, which are about the same values with

Tj = 100 ms. The CPU times for one control cycle computation are ta = 6.0 ms, tl00 = 6.80 ms

and t_ = 0.62 ms for Jacobian update ti,nes of 2 ms, 100 ms and oo, respectively. These values are

close to those obtained in Case A, and further illustrate the significant CPU time savings as a result

of infrequent updating.

4.2 Example 2

The purpose of this example is to demonstrate the capability of the adaptive scheme to perform

both position and orientation trajectory tracking in the standard PUMA 650 robot in the difficult

situation where the manipulator is required to perform a complex motion that passes through a

robot singularity repeatedly. Orientation trajectory tracking is generally hard to achieve due to

the presence of many singularities associated with the wrist. The end-effcctor vector is denoted

by X = (xl, x2, "-,x_3) T, where x_, x_ and xa are the position components, and x4, xs-,and x6

are the orientation components. Here, all degrees of freedom are used for the primary task's. The

end-effector coordinate vector X is related to the angles of waist 01, shoulder 02, elbow O_a,_nd the

three wrist angles 04, 0s and 06 through the forward kinematic equations given in the Appendix.

The orientation is described by the equivalent axis representation [24].

The desired end-effeetor trajectory is selected a.s shown in Figure 13. The PUMA manipulator

starts at 01 = 0., = 0a = 04 = 06 = 0, and 0s = 30 ° with the corresponding end-effector l#osition

(_i , r2 , xa) T = (440, 149, 481) T ram, and the orientation (x4 ,xs ,x6) r = (0, 30, 0) T degrees.

The end-effector takes a partial spiral path until it reaches a tilted circular path of a specified radius.
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It thencontinuesits motiononthiscircularpathrepeatedly.Thedesiredend-effectororientationis
suchthatit holdsanobjectupward(e.g.holdsaglassofwaterwithoutspillingthewater)wllilethe
tiltedpathis traversed.Inordertospecifythis
matrices:

(,0 0)R1 _- 0 COS _1 -- sin _l

0 sin 7'1 cos _'t

where 7'1 and _ are angles of rotation about zl

anti orientation vectors p and and q a.s

sin( d)v(O= n,n, ,-cos( 7,0
0

tilted spiral-circular motion, we defined the rotation

cos_ 0 sin_= )
;172 = 0 1 o (45)

-sin_2 0 cosT2

and :e2 axis, respeclively. Now we form the p'osition

; q = - (46)
xd0)

where d = :t:l specifies the direction of rotation. Note that p(t) describes the equation of a circle

that is rotated about axis zl and a_. The desired trajectory vector is now

Xd(t) = X(O) + ( p _ .q(4t) (47)
\ q /

where g(.) is given in (41), and has the effect of smoothly taking the end-effector from the s}arting

position and orientation X(0) into a spiral path and finally to a circular path with the desired tilt.

The parameters in (45)-(,[6) are selected as _'1 = 35 degrees ¢p2 = 20 degrees, r = 300 ram, r = 5 s

and d = - 1.

The parameters are K0 = Kp = 0, ct = 107, _r = 1.5,/3o = 0.01, w0 = 0.025 and the Jacobian

matrix update time is Tj = 100 ms. The determinant of the Jacobian matrix is shown in Figure

14, and clearly changes sign, showing that the manipulator passes through a singularity repeatedly.

The position and orientation errors are given in Figures (15) and (16) . The maximum position and

orientation errors are about 3.5 mrn and 0.7 degree, and occur along Zl and at4, respectively, and

occur at the singularity point. The joint velocities are plotted in Figure 17 and show a maximum

value of less t.han 120 degrees/s as the arm goes thro,gh singularities. It is seen that "despite

infrequent aacobian updating and the complex manipulator motion passing through singularities,

the adaptive kinematic control scheme h_s produced low errors and velocities. The CPU time savings

due to infrequent updating is again significant in this case with ta = 7 ms and tl00 = 1.0 ms.

It must be emphasized that the above two examples demonstrate typical performance of the

proposed adaptive scheme. Similar results were obtained for a wide range of desired trAj'gctories

with different velocities and with very infrequent Jacobian pseudoinverse computationS'.' Higher

tracking accuracies are achieved by more elaborate tuning of the controller parameters Kp,. K0, a

and _r. _ :

Finally, the scheme was implemented on both the standard and modified PUMA 562. The

control software was written in the C language on a 486 PC. A serial link was established for the

communication between the higher level adaptive controller residing on the PC and the PUMA joint

level controller. Several examples similar to the above were successfully implemented,
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5 Conclusions

A nqethod is proposed for redm/dancy resolution lhat generalizes Jacobian pseudoinverse and

augmentation approaches. Tile method is flexible and allows the user to easily define tasks involving

trajectory tracking and performance optimization. An adaptive algorithm for solving the inverse

kinematic problem of redundant robot hms been presented which uses a feedback loop with an adap-

tive controller to generate the joint angle trajectories for achieving desired end-effector trajectories,

as well as other desired posture trajectories defined by lhe user.

It is shown that the errors in posture trajectories are globally ultimately bounded for different

velocities and bounded uncertainties in the estimation of the Jacobian pseudoinverse matrix. This

robustness allows very infrequent pseudoinverse computations and make the scheme computationally

fast and suitable for real-time implementation. A further feature of the scheme is its tolerance to

manipulat9r singularities and allows the robot to go close to or even pass through singularities while

maintaining acceptable joint velocities and low tracking errors.

The scheme has been applied to a practical redundant robot for achieving both trajectory tracking

and optimization and the results show the effectiveness of tim scheme under a variety of conditions.
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7 Appendix- Forward Kinematic Equations

Ill this appendix we present the forward kinematic equations of the five DOF redundant ma-

nipulator used in Example 1, and the 6 DOF PUMA 562 used in Example 2.

Consider the forward kinematics of the modified PUMA 650 manipulator shown in Figure (ref-

finarmpic.ps). Let 01, 02 and 03 be the waist, shoulder and elbow joint angles, respectively, and use

the standard notations ct = cosOl, sl = sin01, el2 = cos(01 + 02), etc. The shoulder position vector

P._h is

P*h --- dlCl (48)
0

where dl = 1,19.1 mm is the b_e to shoulder length . The unit vector a2 = _ defines the

reference axis for 02. The elbow position vector is

P_l = P,h + l_slc2 (49)

-12s2 + l:_s2a

where 12 = 432 mm is shoulder joint to elbow joint distance and la = 20.3 mm is the elbow offset.

The elbow height is h = -l,.s2. The wrist position is

p_ = Pet + v =_ Pet + d.lsts2a (50)
d4c2a

where d4 = 432 mm is elbow to wrist lengdl. The unit vector a4 - _ defines the reference axis for

0.1. To find as, the unit vector for 0s, we note that due to the PUMA 562 geometry, as is parallel

to a2 when the manipulator is at "home" position and 0.5 is zero. Consequently, the unit vector as

is obtained as as = rot(04, a4) a2 where rot(04, (t.l) iS the matrix representing the rotation about the

vector a4 by 04, and is obtained from

pO_(04, a4) : C4[ + (1 -- C.i)(14a_ + ,-q'4S(C14) (51)

where St.) is the skew symmetric operator defined so that for two vectors a and b, a x b = S(a)b.

Since a6, the reference axis for joint 06, is parallel with a4 when 05 = 0, we have a6 = rol(Os, as)a4

which rotates a4 about a5 by 0s. The position of the end-effector mounting plate is

p_ = lsa6 + p,o_ (52)

where Is = 57.2 mm is the wrist to plate length. When the extra link is mounted on the end-_ffector

plate, the tip position of this link is

Xtie = (15 + 16)a6 + p,,,,. (53)

where 16 = 250 mm is the length of the extra !ink.
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Theorientationof theplateis determinedusingtileequivalentaxisrepresentation[24].This
requirescomputingtherotationmatrix

12 = ,'o1(06, a6) vol( O5, as) rot(04, a4) rot(03 + 0_, a2) rot(O], al ) (54)

where r 11

Note that aa = aa since the axis of rotation of joints 2 and 3 are parallel. Given the rotation matrix

/_, the angle of rotation _9and tile axis of rotation k are obtained from [24] "_

1
0 = cos -I _(r11 + r22 + r33- I) (55)

' " ", I'33 are the elements of the rotation matrix R. The end-effector orientation is:

( ) 'r32 -- r2a

¢_=w ,'13 ral , 0<r-e (56)
P21 /'12 I

where c is a small number and

w= sin0' e<O<rr-e

_, ,__<_

In order to determine ¢_ for 0 > r- e, let ul = X/_

can be shown that [26] Ce = 0

2u_

lull < e and I_-I > _; and ¢_ = v_ _ for all other values of _.- 2u3

113

position and orientation vector is X_ = .

(57)

, ul = , and Ul = . Then it

2u7_ I

__raz for t9 > r - e and I,,,I > *; ¢_ = 0 u2 for O > r - e,
2it t I
r_O.z, r_za_

2uj 2u_

Finally, the end-effector
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x 2 (_)

80(10c

700.(_

4(x10_

3(_00

200.00

I0_00

0.00.

Figure 3: Trace of arm motion, Example 1 - Case A.
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